Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Front Pharmacol ; 15: 1373048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741591

RESUMO

Introduction: To study the effects of drug-induced CYP2D6 activity inhibition and genetic polymorphisms on fluoxetine metabolism, rat liver microsomes (RLMs) and SD rats were used to investigate the potential drug‒drug interactions (DDIs), and CYP2D6 http://muchong.com/t-10728934-1 recombinant baculosomes were prepared and subjected to catalytic reactivity studies. Methods and Results: All analytes were detected by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC‒MS/MS). After screening for 27 targeted natural products, miltirone was identified as having obvious inhibitory effect on fluoxetine metabolism in RLMs. In vivo, the concentration of fluoxetine in rat blood increased markedly after miltirone administration. The molecular docking results showed that miltirone bound more strongly to CYP2D6 than fluoxetine, and PHE120 may be the key residue leading to the inhibition of CYP2D6-mediated fluoxetine N-demethylation by miltirone. In terms of the genetic polymorphism of CYP2D6 on fluoxetine metabolism, the intrinsic clearance values of most variants were significantly altered. Among these variants, CYP2D6*92 and CYP2D6*96/Q424X were found to be catalytically inactive for fluoxetine metabolism, five variants (CYP2D6*89/L142S, *97/F457L, *R497, *V342M and *R344Q) exhibited markedly increased clearance values (>125.07%) and seven variants (CYP2D6*2, *10, *87/A5V, *93/T249P, *E215K, *R25Q and *R440C) exhibited significantly decreased clearance values (from 6.62% to 66.79%) compared to those of the wild-type. Conclusion: Our results suggest that more attention should be given to subjects in the clinic who take fluoxetine and also carry one of these infrequent CYP2D6 alleles or are coadministered drugs containing miltirone.

2.
Biomed Pharmacother ; 175: 116421, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38719708

RESUMO

Tofacitinib can effectively improve the clinical symptoms of rheumatoid arthritis (RA) patients. In this current study, a recombinant human CYP2C19 and CYP3A4 system was operated to study the effects of recombinant variants on tofacitinib metabolism. Moreover, the interaction between tofacitinib and myricetin was analyzed in vitro. The levels of M9 (the main metabolite of tofacitinib) was detected by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The findings revealed that 11 variants showed significant changes in the levels of M9 compared to CYP3A4.1, while the other variants didn't reveal any remarkable significances. Compared with CYP2C19.1, 11 variants showed increases in the levels of M9, and 10 variants showed decreases. Additionally, it was demonstrated in vitro that the inhibition of tofacitinib by myricetin was a non-competitive type in rat liver microsomes (RLM) and human liver microsomes (HLM). However, the inhibitory mechanism was a competitive type in CYP3A4.18, and mixed type in CYP3A4.1 and .28, respectively. The data demonstrated that gene polymorphisms and myricetin had significant effects on the metabolism of tofacitinib, contributing to important clinical data for the precise use.

3.
Pharmacogenomics J ; 24(3): 13, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637522

RESUMO

To investigate the pharmacokinetic and pharmacodynamic profiles of volunteers carrying CYP2D6 genotypes with unknow metabolic phenotypes, a total of 22 volunteers were recruited based on the sequencing results. Peripheral blood and urine samples were collected at specific time points after oral administration of metoprolol. A validated high-performance liquid chromatography (HPLC) method was used to determine the concentrations of metoprolol and α-hydroxymetoprolol. Blood pressure and electrocardiogram were also monitored. The results showed that the main pharmacokinetic parameters of metoprolol in CYP2D6*1/*34 carriers are similar to those in CYP2D6*1/*1 carriers. However, in individuals carrying the CYP2D6*10/*87, CYP2D6*10/*95, and CYP2D6*97/*97 genotypes, the area under the curve (AUC) and half-life (t1/2) of metoprolol increased by 2-3 times compared to wild type. The urinary metabolic ratio of metoprolol in these genotypes is consistent with the trends observed in plasma samples. Therefore, CYP2D6*1/*34 can be considered as normal metabolizers, while CYP2D6*10/*87, CYP2D6*10/*95, and CYP2D6*97/*97 are intermediate metabolizers. Although the blood concentration of metoprolol has been found to correlate with CYP2D6 genotype, its blood pressure-lowering effect reaches maximum effectiveness at a reduction of 25 mmHg. Furthermore, P-Q interval prolongation and heart rate reduction are not positively correlated with metoprolol blood exposure. Based on the pharmacokinetic-pharmacodynamic model, this study clarified the properties of metoprolol in subjects with novel CYP2D6 genotypes and provided important fundamental data for the translational medicine of this substrate drug.


Assuntos
Antagonistas Adrenérgicos beta , Metoprolol , Humanos , Metoprolol/farmacocinética , Metoprolol/urina , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Preparações Farmacêuticas , Genótipo , Fenótipo
4.
Heliyon ; 10(7): e28952, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596098

RESUMO

Amino acid variants in protein may result in deleterious effects on enzymatic activity. In this study we investigate the DNA variants on activity of CYP2B6 gene in a Chinese Han population for potential use in precision medicine. All exons in CYP2B6 gene from 1483 Chinese Han adults (Zhejiang province) were sequenced using Sanger sequencing. The effects of nonsynonymous variants on recombinant protein catalytic activity were investigated in vitro with Sf12 system. The haplotype of novel nonsynonymous variants with other single nucleotide variants in the same allele was determined using Nanopore sequencing. Of 38 alleles listed on the Pharmacogene Variation Consortium, we detected 7 previously reported alleles and 18 novel variants, of which 11 nonsynonymous variants showed lower catalytic activity (0.00-0.60) on bupropion compared to CYP2B6*1. Further, these 11 novel star-alleles (CYP2B6*39-49) were assigned by the Pharmacogene Variation Consortium, which may be valuable for pharmacogenetic research and personalized medicine.

5.
Toxicol In Vitro ; 95: 105739, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38042355

RESUMO

PURPOSE: The inhibitory effect of Apatinib on cytochrome P450 (CYP450) enzymes has been studied. However, it is unknown whether the inhibition is related to the major metabolites, M1-1, M1-2 and M1-6. METHODS: A 5-in-1 cocktail system composed of CYP2B6/Cyp2b1, CYP2C9/Cyp2c11, CYP2E1/Cyp2e1, CYP2D6/Cyp2d1 and CYP3A/Cyp3a2 was used in this study. Firstly, the effects of APA and its main metabolites on the activities of HLMs, RLMs and recombinant isoforms were examined. The reaction mixture included HLMs, RLMs or recombinant isoforms (CYP3A4.1, CYP2D6.1, CYP2D6.10 or CYP2C9.1), analyte (APA, M1-1, M1-2 or M1-6), probe substrates. The reactions were pre-incubated for 5 min at 37 °C, followed by the addition of NAPDH to initiate the reactions, which continued for 40 min. Secondly, IC50 experiments were conducted to determine if the inhibitions were reversible. The reaction mixture of the "+ NADPH Group" included HLMs or RLMs, 0 to 100 of µM M1-1 or M1-2, probe substrates. The reactions were pre-incubated for 5 min at 37 °C, and then NAPDH was added to initiate reactions, which proceeded for 40 min. The reaction mixture of the "- NADPH Group" included HLMs or RLMs, probe substrates, NAPDH. The reactions were pre-incubated for 30 min at 37 °C, and then 0 to 100 µM of M1-1 or M1-2 was added to initiate the reactions, which proceeded for 40 min. Finally, the reversible inhibition of M1-1 and M1-2 on isozymes was determined. The reaction mixture included HLMs or RLMs, 0 to 10 µM of M1-1 or M1-2, probe substrates with concentrations ranging from 0.25Km to 2Km. RESULTS: Under the influence of M1-6, the activity of CYP2B6, 2C9, 2E1 and 3A4/5 was increased to 193.92%, 210.82%, 235.67% and 380.12% respectively; the activity of CYP2D6 was reduced to 92.61%. The inhibitory effects of M1-1 on CYP3A4/5 in HLMs and on Cyp2d1 in RLMs, as well as the effect of M1-2 on CYP3A in HLMs, were determined to be noncompetitive inhibition, with the Ki values equal to 1.340 µM, 1.151 µM and 1.829 µM, respectively. The inhibitory effect of M1-1 on CYP2B6 and CYP2D6 in HLMs, as well as the effect of M1-2 on CYP2C9 and CYP2D6 in HLMs, were determined to be competitive inhibition, with the Ki values equal to 12.280 µM, 2.046 µM, 0.560 µM and 4.377 µM, respectively. The inhibitory effects of M1-1 on CYP2C9 in HLMs and M1-2 on Cyp2d1 in RLMs were determined to be mixed-type, with the Ki values equal to 0.998 µM and 0.884 µM. The parameters could not be obtained due to the atypical kinetics of CYP2E1 in HLMs under the impact of M1-2. CONCLUSIONS: M1-1 and M1-2 exhibited inhibition for several CYP450 isozymes, especially CYP2B6, 2C9, 2D6 and 3A4/5. This observation may uncover potential drug-drug interactions and provide valuable insights for the clinical application of APA.


Assuntos
Citocromo P-450 CYP3A , Microssomos Hepáticos , Piridinas , Humanos , Ratos , Animais , Microssomos Hepáticos/metabolismo , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2D6/farmacologia , Citocromo P-450 CYP2E1/metabolismo , Isoenzimas/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2B6/metabolismo , NADP/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo
6.
Pharmacol Res ; 199: 106990, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984506

RESUMO

Resistance to temozolomide (TMZ), the frontline chemotherapeutic agent for glioblastoma (GBM), has emerged as a formidable obstacle, underscoring the imperative to identify alternative therapeutic strategies to improve patient outcomes. In this study, we comprehensively evaluated a novel agent, O6-methyl-2'-deoxyguanosine-5'-triphosphate (O6-methyl-dGTP) for its anti-GBM activity both in vitro and in vivo. Notably, O6-methyl-dGTP exhibited pronounced cytotoxicity against GBM cells, including those resistant to TMZ and overexpressing O6-methylguanine-DNA methyltransferase (MGMT). Mechanistic investigations revealed that O6-methyl-dGTP could be incorporated into genomic DNA, disrupting nucleotide pools balance, and inducing replication stress, resulting in S-phase arrest and DNA damage. The compound exerted its anti-tumor properties through the activation of AIF-mediated apoptosis and the parthanatos pathway. In vivo studies using U251 and Ln229 cell xenografts supported the robust tumor-inhibitory capacity of O6-methyl-dGTP. In an orthotopic transplantation model with U87MG cells, O6-methyl-dGTP showcased marginally superior tumor-suppressive activity compared to TMZ. In summary, our research, for the first time, underscores the potential of O6-methyl-dGTP as an effective candidate against GBM, laying a robust scientific groundwork for its potential clinical adoption in GBM treatment regimens.


Assuntos
Glioblastoma , Polifosfatos , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico , Caspases , Linhagem Celular Tumoral , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Nucleotídeos , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/farmacologia , O(6)-Metilguanina-DNA Metiltransferase/uso terapêutico , Desoxiguanosina/farmacologia , Desoxiguanosina/uso terapêutico , DNA , Resistencia a Medicamentos Antineoplásicos
7.
J Pharmacol Exp Ther ; 388(1): 190-200, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37863485

RESUMO

This study aimed to evaluate the effects of cytochrome P450 3A4 (CYP3A4) gene polymorphism and drug interaction on the metabolism of blonanserin. Human recombinant CYP3A4 was prepared using the Bac-to-Bac baculovirus expression system. A microsomal enzyme reaction system was established, and drug-drug interactions were evaluated using Sprague-Dawley rats. Ultra-performance liquid chromatography-tandem mass spectrometry was used to detect the concentrations of blonanserin and its metabolite. Compared with wild type CYP34A, the relative clearance of blonanserin by CYP3A4.29 significantly increased to 251.3%, while it decreased notably with CYP3A4.4, 5, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 23, 24, 28, 31, 33, and 34, ranging from 6.09% to 63.34%. Among 153 tested drugs, nimodipine, felodipine, and amlodipine were found to potently inhibit the metabolism of blonanserin. Moreover, the inhibitory potency of nimodipine, felodipine, and amlodipine varied with different CYP3A4 variants. The half-maximal inhibitory concentration and enzymatic kinetics assay demonstrated that the metabolism of blonanserin was noncompetitively inhibited by nimodipine in rat liver microsomes and was inhibited in a mixed manner by felodipine and amlodipine in both rat liver microsomes and human liver microsomes. When nimodipine and felodipine were coadministered with blonanserin, the area under the blood concentration-time curve (AUC)(0-t), AUC(0-∞), and C max of blonanserin increased. When amlodipine and blonanserin were combined, the C max of blonanserin C increased remarkably. The vast majority of CYP3A4 variants have a low ability to catalyze blonanserin. With combined administration of nimodipine, felodipine, and amlodipine, the elimination of blonanserin was inhibited. This study provides the basis for individualized clinical use of blonanserin. SIGNIFICANCE STATEMENT: The enzyme kinetics of novel CYP3A4 enzymes for metabolizing blonanserin were investigated. Clearance of blonanserin by CYP3A4.4, 5, 7-10, 12-14, 16-18, 23-24, 28, 31, 33, and 34 decreased notably, but increased with CYP3A4.29. Additionally, we established a drug interaction spectrum for blonanserin, in which nimodipine, felodipine, and amlodipine kinetics exhibited mixed inhibition. Moreover, their inhibitory potencies decreased with CYP3A4.4 and 5 compared to CYP3A4.1. This study provides essential data for personalized clinical use of blonanserin.


Assuntos
Citocromo P-450 CYP3A , Nimodipina , Humanos , Ratos , Animais , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Nimodipina/metabolismo , Nimodipina/farmacologia , Felodipino/metabolismo , Felodipino/farmacologia , Ratos Sprague-Dawley , Interações Medicamentosas , Anlodipino/metabolismo , Anlodipino/farmacologia , Microssomos Hepáticos/metabolismo , Metaboloma
8.
Toxicology ; 500: 153682, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38006927

RESUMO

Ketamine is a psychotropic drug that can cause significant neurological symptoms and is closely linked to the activity of the CYP3A4 enzyme. This study aimed to examine the diversity of CYP3A4 activity affects the metabolism of ketamine, focusing on genetic variation and drug-induced inhibition. We used a baculovirus-insect cell expression system to prepare recombinant human CYP3A4 microsomes. Then, in vitro enzyme incubation systems were established and used UPLC-MS/MS to detect ketamine metabolite. In rats, we investigated the metabolism of ketamine and its metabolite in the presence of the CYP3A4 inhibitor voriconazole. Molecular docking was used to explore the molecular mechanism of inhibition. The results showed that the catalytic activity of CYP3A4.5, .17, .23, .28, and .29 significantly decreased compared to CYP3A4.1, with a minimum decrease of 3.13%. Meanwhile, the clearance rate of CYP3A4.2, .32, and .34 enhanced remarkably, ranging from 40.63% to 87.50%. Additionally, hepatic microsome incubation experiments revealed that the half-maximal inhibitory concentration (IC50) of voriconazole for ketamine in rat and human liver microsomes were 18.01 ± 1.20 µM and 14.34 ± 1.70 µM, respectively. When voriconazole and ketamine were co-administered, the blood exposure of ketamine and norketamine significantly increased in rats, as indicated by the area under the concentration-time curve (AUC) and maximum concentration (Cmax). The elimination half-life (t1/2Z) of these substances was also prolonged. Moreover, the clearance (CLz/F) of ketamine decreased, while the apparent volume of distribution (Vz/F) increased significantly. This might be attributed to the competition between voriconazole and ketamine for binding sites on the CYP3A4 enzyme. In conclusion, variations in CYP3A4 activity would result in the stratification of ketamine blood exposure.


Assuntos
Citocromo P-450 CYP3A , Ketamina , Animais , Humanos , Ratos , Cromatografia Líquida , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ketamina/metabolismo , Ketamina/farmacocinética , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Voriconazol/metabolismo , Voriconazol/farmacologia
9.
Biomed Pharmacother ; 168: 115833, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37935069

RESUMO

The aim of this study was to investigate the impacts of 24 variants of recombinant human CYP3A4 and drug interactions on the metabolism of lurasidone. In vitro, enzymatic reaction incubation system of CYP3A4 was established to determine the kinetic parameters of lurasidone catalyzed by 24 CYP3A4 variants. Then, we constructed rat liver microsomes (RLM) and human liver microsomes (HLM) incubation system to screen potential anti-tumor drugs that could interact with lurasidone and studied its inhibitory mechanism. In vivo, Sprague-Dawley (SD) rats were applied to study the interaction between lurasidone and olmutinib. The concentrations of the analytes were detected by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). As the results, we found that compared with the wild-type CYP3A4, the relative intrinsic clearances vary from 355.77 % in CYP3A4.15 to 14.11 % in CYP3A4.12. A series of drugs were screened based on the incubation system, and compared to without olmutinib, the amount of ID-14283 (the metabolite of lurasidone) in RLM and HLM were reduced to 7.22 % and 7.59 %, and its IC50 were 18.83 ± 1.06 µM and 16.15 ± 0.81 µM, respectively. At the same time, it exerted inhibitory effects both through a mixed mechanism. When co-administration of lurasidone with olmutinib in rats, the AUC(0-t) and AUC(0-∞) of lurasidone were significantly increased by 73.52 % and 69.68 %, respectively, while CLz/F was observably decreased by 43.83 %. In conclusion, CYP3A4 genetic polymorphism and olmutinib can remarkably affect the metabolism of lurasidone.


Assuntos
Citocromo P-450 CYP3A , Cloridrato de Lurasidona , Animais , Humanos , Ratos , Cromatografia Líquida , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Cloridrato de Lurasidona/farmacocinética , Microssomos Hepáticos , Polimorfismo Genético , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
10.
Food Chem Toxicol ; 181: 114101, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37863381

RESUMO

Itraconazole is a triazole anti-infective drug that has been proven to prevent and treat a variety of fungal and viral infections and has been considered to be a potential therapeutic remedy for COVID-19 treatment. In this study, we aimed to completely evaluate the impacts of Cytochrome P450 3A4 (CYP3A4) variant proteins and drug interactions on the metabolism of itraconazole in recombinant insect microsomes, and to characterize the potential mechanism of substrate selectivity. Incubations with itraconazole (0.2-15 µM) in the presence/absence of lopinavir or darunavir were assessed by CYP3A4 variants, and the metabolite hydroxyitraconazole concentrations were measured by UPLC-MS/MS. Our data showed that when compared with CYP3A4.1, 4 variants (CYP3A4.9, .10, .28 and .34) displayed no significant differences, and 3 variants (CYP3A4.14, .15 and .19) exhibited increased intrinsic clearance (CLint), whereas the remaining 17 variant proteins showed decreased enzyme activities for the catalysis of itraconazole. Moreover, the inhibitory effects of lopinavir and darunavir on itraconazole metabolism varied in different degrees. Furthermore, different changed trend of the kinetic parameters in ten variants (CYP3A4.5, .9, .10, .16, .19, .24, .28, .29, .31, and .33) were observed, especially CYP3A4.5 and CYP3A4.16, and this may be related to the metabolic site-heme iron atom distance. In the present study, we functionally analyzed the effects of 25 CYP3A4 protein variants on itraconazole metabolism for the first time, and provided comprehensive data on itraconazole metabolism in vitro. This may help to better assess the metabolism and elimination of itraconazole in clinic to improve the safety and efficacy of its clinical treatment and also provide new possibilities for the treatment of COVID-19.


Assuntos
COVID-19 , Itraconazol , Humanos , Itraconazol/farmacologia , Itraconazol/química , Itraconazol/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Lopinavir , Darunavir , Tratamento Farmacológico da COVID-19 , Cromatografia Líquida , Espectrometria de Massas em Tandem , Interações Medicamentosas , Variação Genética
11.
Food Chem Toxicol ; 181: 114065, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769895

RESUMO

Artemether-lumefantrine is an artemisinin-based combination therapy for the treatment of malaria, which are primarily metabolized by cytochrome P450 3A4. Therapeutic difference caused by gene polymorphisms of CYP3A4 may lead to uncertain adverse side effects or treatment failure. The aim of this study was to evaluate the effect of CYP3A4 gene polymorphism on artemether-lumefantrine metabolism in vitro. Enzyme kinetics assay was performed using recombinant human CYP3A4 cell microsomes. The analytes, dihydroartimisinin and desbutyl-lumefantrine, were detected by ultra-performance liquid chromatography tandem mass spectrometry. The results demonstrated that compared to CYP3A4.1, the intrinsic clearance of CYP3A4.4, 5, 9, 16, 18, 23, 24, 28, 31-34 significantly reduced for artemether (58.5%-93.3%), and CYP3A4.17 almost loss catalytic activity. Simultaneously, CYP3A4.5, 14, 17, 24 for lumefantrine were decreased by 56.1%-99.6%, and CYP3A4.11, 15, 18, 19, 23, 28, 29, 31-34 for lumefantrine was increased by 51.7%-296%. The variation in clearance rate indicated by molecular docking could be attributed to the disparity in the binding affinity of artemether and lumefantrine with CYP3A4. The data presented here have enriched our understanding of the effect of CYP3A4 gene polymorphism on artemether-lumefantrine metabolizing. These findings serve as a valuable reference and provide insights for guiding the treatment strategy involving artemether-lumefantrine.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Antimaláricos/efeitos adversos , Artemeter/uso terapêutico , Citocromo P-450 CYP3A/genética , Simulação de Acoplamento Molecular , Combinação Arteméter e Lumefantrina/uso terapêutico , Lumefantrina/uso terapêutico , Fluorenos/efeitos adversos , Malária Falciparum/induzido quimicamente , Malária Falciparum/tratamento farmacológico
12.
PeerJ ; 11: e16051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719112

RESUMO

Since the combination of anticancer drugs and opioids is very common, apatinib and tramadol are likely to be used in combination clinically. This study evaluated the effects of apatinib on the pharmacokinetics of tramadol and its main metabolite O-desmethyltramadol in Sprague-Dawley (SD) rats and the inhibitory effects of apatinib on tramadol in rat liver microsomes (RLMs), human liver microsomes (HLMs) and recombinant human CYP2D6.1. The samples were determined by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The in vivo results showed that compared with the control group, apatinib increased the AUC(0-t), AUC(0-∞) and Cmax values of tramadol and O-desmethyltramadol, and decreased the values of VZ/F and CLz/F. In addition, the MRT(0-t), MRT(0-∞) values of O-desmethyltramadol were increased. In vitro, apatinib inhibited the metabolism of tramadol by a mixed way with IC50 of 1.927 µM in RLMs, 2.039 µM in HLMs and 15.32 µM in CYP2D6.1. In summary, according to our findings, apatinib has a strong in vitro inhibitory effect on tramadol, and apatinib can increase the analgesic effect of tramadol and O-desmethyltramadol in rats.


Assuntos
Tramadol , Humanos , Ratos , Animais , Tramadol/farmacologia , Cromatografia Líquida , Citocromo P-450 CYP2D6 , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Microssomos Hepáticos
13.
Toxicol Appl Pharmacol ; 475: 116653, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37574146

RESUMO

AIM: Ibuprofen is the most commonly used analgesic. CYP polymorphisms are mainly responsible for the differences in drug metabolism among individuals. Variations in the ability of populations to metabolize ibuprofen can lead to drug exposure events. The aim of this study was to evaluate the effects of CYP2C19 and CYP3A4 polymorphisms on ibuprofen metabolism in a Chinese population. METHODS: First, 31 CYP2C19 and 12 CYP3A4 microsomal enzymes were identified using an insect expression system. Then, variants were evaluated using a mature incubation system. Moreover, ibuprofen metabolite content was determined via ultra-performance liquid chromatography-tandem mass spectrometry analysis. Finally, kinetic parameters of CYP2C19 and CYP3A4 genotypes were determined via Michaelis-Menten curve fitting. RESULTS: Most variants exhibited significantly altered intrinsic clearance compared to the wild type. In the CYP2C19 metabolic pathway, seven variants exhibited no significant alterations in intrinsic clearance (CLint), six variants exhibited significantly high CLint (121-291%), and the remaining 15 variants exhibited substantially reduced CLint (1-71%). In the CYP3A4 metabolic pathway, CYP3A4*30 was not detected in the metabolite content due to the absence of activity, and 10 variants exhibited significantly reduced CLint. CONCLUSION: To the best of our knowledge, this is the first study to assess the kinetic characteristics of 31 CYP2C19 and 12 CYP3A4 genotypes on ibuprofen metabolism. However, further studies are needed on poor metabolizers as they are more susceptible to drug exposure. Our findings suggest that the kinetic characteristics in combination with artificial intelligence to predict the toxicity of ibuprofen and reduce any adverse drug reactions.


Assuntos
Citocromo P-450 CYP3A , Ibuprofeno , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP2C19/genética , Inteligência Artificial , Polimorfismo Genético
14.
Food Chem Toxicol ; 178: 113926, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37406757

RESUMO

BACKGROUND AND OBJECTIVE: Ibuprofen, a common non-steroidal anti-inflammatory drug, is used clinically for pain relief and antipyretic treatment worldwide. However, regular or long-term use of ibuprofen may lead to a series of adverse reactions, including gastrointestinal bleeding, hypertension and kidney injury. Previous studies have shown that CYP2C9 gene polymorphism plays an important role in the elimination of various drugs, which leads to the variation in drug efficacy. This study aimed to evaluate the effect of 38 CYP2C9 genotypes on ibuprofen metabolism. METHODS: Thirty-eight recombinant human CYP2C9 microsomal enzymes were obtained using a frugiperda 21 insect expression system according to a previously described method. Assessment of the catalytic function of these variants was completed via a mature incubation system: 5 pmol CYP2C9*1 and 38 CYP2C9 variants recombinant human microsomes, 5 µL cytochrome B5, ibuprofen (5-1000 µM), and Tris-HCl buffer (pH 7.4). The ibuprofen metabolite contents were determined using HPLC analysis. HPLC analysis included a UV detector, Plus-C18 column, and mobile phase [50% acetonitrile and 50% water (containing 0.05% trifluoroacetic acid)]. The kinetic parameters of the CYP2C9 genotypes were obtained by Michaelis-Menten curve fitting. RESULTS: The intrinsic clearance (CLint) of eight variants was not significantly different from CYP2C9*1; four CYP2C9 variants (CYP2C9*38, *44, *53 and *59) showed significantly higher CLint (increase by 35%-230%) than that of the wild-type; the remaining twenty-six variants exhibited significantly reduced CLint (reduced by 30%-99%) compared to that of the wild-type. CONCLUSION: This is the first systematic evaluation of the catalytic characteristics of 38 CYP2C9 genotypes involved ibuprofen metabolism. Our results provide a corresponding supplement to studies on CYP2C9 gene polymorphisms and kinetic characteristics of different variants. We need to focus on poor metabolizers (PMs) with severely abnormal metabolic functions, because they are more susceptible to drug exposure.


Assuntos
Anti-Inflamatórios não Esteroides , Ibuprofeno , Humanos , Ibuprofeno/química , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Anti-Inflamatórios não Esteroides/química , Polimorfismo Genético , Genótipo
15.
J Control Release ; 358: 319-332, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149150

RESUMO

Hepatic fibrosis is the common pathway for most chronic liver diseases, characterized by excessive accumulation of extracellular matrix (ECM) proteins. It has been shown that fibrotic ECM significantly hindered passage of nanoparticles. Efforts have been made by decorating degrading enzymes on surfaces of nanosized delivery vehicles to improve drug delivery. However, these strategies are restricted by limiting shelf-life. Inspired by the application of sonoporation in assisting drug delivery through blood-brain barrier and tumor tissues, we investigated whether sonoporation can be an alternative strategy in improving drug delivery for fibrotic diseases. Hydroxycamptothecin (HCPT), a potential drug in treating liver fibrosis, was selected as a model drug to evaluate the drug delivery efficiency and therapeutic effect among three delivery strategies, i.e., (1) injection solution, (2) delivery through liposomes, and (3) delivery via sonoporation. Our study showed that in addition to the improved drug delivery efficiency, the combination of HCPT and sonoporation led to synergistic effect and the mechanisms were investigated. The treatment group of HCPT delivered with sonoporation achieved the most significant attenuation in liver fibrosis among the three delivery strategies.


Assuntos
Camptotecina , Sistemas de Liberação de Medicamentos , Humanos , Lipossomos , Cirrose Hepática , Microbolhas
16.
Lab Invest ; 103(8): 100180, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37230466

RESUMO

Hepatocellular carcinoma (HCC) remains a significant health burden globally due to its high prevalence and morbidity. C-terminal-binding protein 1 (CTBP1) is a transcriptional corepressor that modulates gene transcription by interacting with transcription factors or chromatin-modifying enzymes. High CTBP1 expression has been associated with the progression of various human cancers. In this study, bioinformatics analysis suggested the existence of a CTBP1/histone deacetylase 1 (HDAC1)/HDAC2 transcriptional complex that regulates the expression of methionine adenosyltransferase 1A (MAT1A), whose loss has been associated with ferroptosis suppression and HCC development. Thus, this study aims to investigate the interactions between the CTBP1/HDAC1/HDAC2 complex and MAT1A and their roles in HCC progression. First, high expression of CTBP1 was observed in HCC tissues and cells, where it promoted HCC cell proliferation and mobility while inhibiting cell apoptosis. CTBP1 interacted with HDAC1 and HDAC2 to suppress the MAT1A transcription, and silencing of either HDAC1 or HDAC2 or overexpression of MAT1A led to the inhibition of cancer cell malignancy. In addition, MAT1A overexpression resulted in increased S-adenosylmethionine levels, which promoted ferroptosis of HCC cells directly or indirectly by increasing CD8+ T-cell cytotoxicity and interferon-γ production. In vivo, MAT1A overexpression suppressed growth of CTBP1-induced xenograft tumors in mice while enhancing immune activity and inducing ferroptosis. However, treatment with ferrostatin-1, a ferroptosis inhibitor, blocked the tumor-suppressive effects of MAT1A. Collectively, this study reveals that the CTBP1/HDAC1/HDAC2 complex-induced MAT1A suppression is liked to immune escape and reduced ferroptosis of HCC cells.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Fatores de Transcrição , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Histona Desacetilase 2/metabolismo
17.
Arch Toxicol ; 97(8): 2133-2142, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209178

RESUMO

In this study, the effects of 17 CYP3A4 variants and drug-drug interactions (DDI) with its mechanism on alectinib metabolism were investigated. In vitro incubation systems of rat liver microsomes (RLM), human liver microsomes (HLM) and recombinant human CYP3A4 variants were established. The formers were used to screen potential drugs that inhibited alectinib metabolism and study the underlying mechanism, and the latter was used to determine the dynamic characteristics of CYP3A4 variants. Alectinib and its main metabolite M4 were quantitatively determined by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The results showed that compared with CYP3A4.1, only CYP3A4.29 showed higher catalytic activity, while the catalytic activity of CYP3A4.4, .7, .8, .12, .14, .16, .17, .18, .19, .20, .23, and .24 decreased significantly. Among them, the catalytic activity of CYP3A4.20 is the lowest, only 2.63% of that of CYP3A4.1. Based on the RLM incubation system in vitro, 81 drugs that may be combined with alectinib were screened, among which 18 drugs had an inhibition rate higher than 80%. In addition, nicardipine had an inhibition rate of 95.09% with a half-maximum inhibitory concentration (IC50) value of 3.54 ± 0.96 µM in RLM and 1.52 ± 0.038 µM in HLM, respectively. There was a mixture of non-competitive and anti-competitive inhibition of alectinib metabolism in both RLM and HLM. In vivo experiments of Sprague-Dawley (SD) rats, compared with the control group (30 mg/kg alectinib alone), the AUC(0-t), AUC(0-∞), Tmax and Cmax of alectinib administered in combination with 6 mg/kg nicardipine were significantly increased in the experimental group. In conclusion, the metabolism of alectinib was affected by polymorphisms of the CYP3A4 gene and nicardipine. This study provides reference data for clinical individualized administration of alectinib in the future.


Assuntos
Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Ratos , Humanos , Animais , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Cromatografia Líquida , Ratos Sprague-Dawley , Nicardipino/metabolismo , Nicardipino/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem , Interações Medicamentosas , Microssomos Hepáticos/metabolismo
18.
Chem Biol Interact ; 374: 110398, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36773832

RESUMO

The purpose of this study was to (i) investigate the effect of CYP3A4 variants on tofacitinib metabolism, and (ii) investigate the interaction of tofacitinib with resveratrol and its underlying mechanisms. The concentration of M9, the main metabolite of tofacitinib, was determined by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The results showed that the clearance rate of CYP3A4.18 variant was significantly decreased compared with CYP3A4.1, and the CYP3A4.28 variant was changed, but not statistically significant. In addition, the potential interaction of resveratrol with tofacitinib was determined based on rat liver microsomes (RLM), human liver microsomes (HLM), and CYP3A4 response systems. Resveratrol has an IC50 of 15.67 µM in RLM with a non-competitive mechanism. In HLM with a non-competitive mechanism, the IC50 value was 8.88 µM. The IC50 values were 6.41 µM, 10.60 µM and 27.08 µM in CYP3A4.1, .18 and .28, respectively, all with a competitive mechanism. In the in vivo study, Sprague-Dawley (SD) rats were randomized into two groups (n = 6) to receive tofacitinib with or without resveratrol. We found that the AUC(0-∞) of tofacitinib in the experimental group increased to around 207.5% compared with the control group. And Cmax increased to 260.0%. In summary, our data showed that resveratrol significantly affect the metabolism of tofacitinib, thus providing basic data for the precise clinical application of tofacitinib.


Assuntos
Citocromo P-450 CYP3A , Espectrometria de Massas em Tandem , Ratos , Humanos , Animais , Resveratrol/farmacologia , Cromatografia Líquida , Ratos Sprague-Dawley , Citocromo P-450 CYP3A/metabolismo , Espectrometria de Massas em Tandem/métodos , Microssomos Hepáticos/metabolismo , Cromatografia Líquida de Alta Pressão/métodos
19.
Food Chem Toxicol ; 174: 113669, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36805545

RESUMO

The objective of this study was to determine the effect of flavonoids on midostaurin disposition considering co-administration and metabolic enzyme gene polymorphism. Enzymatic incubation assays were performed in vitro, while in vivo experiments were conducted in Sprague-Dawley rats. The analytes were determined via UPLC-MS/MS. We found that myricetin was the most potent among the investigated 10 flavonoids in suppressing the metabolism of midostaurin, with an IC50 at a low µM level. After co-administration of midostaurin and myricetin, the plasma concentration of midostaurin's primary metabolite CGP62221 was reduced corresponding to myricetin exposure. Furthermore, CYP3A4 homologous rat protein CYP3A2 was reduced significantly in the co-administration group. Thereafter, the kinetic parameters of 23 recombinant human CYP3A4 variants were determined using midostaurin. The relative intrinsic clearance varied from 269.63% in CYP3A4.29-8.95% in CYP3A4.17. In addition, the inhibitory potency of myricetin was substantially different for CYP3A4.29 and CYP3A4.17 compared with wild type, with IC50 values of 9.85 ± 0.27 µM and 90.99 ± 16.13 µM, respectively. Collectively, our data demonstrated that flavonoids, particularly myricetin, can inhibit the metabolism of midostaurin. Additionally, CYP3A4 genetic polymorphism may contribute to stratification of midostaurin blood exposure.


Assuntos
Citocromo P-450 CYP3A , Espectrometria de Massas em Tandem , Ratos , Humanos , Animais , Citocromo P-450 CYP3A/metabolismo , Ratos Sprague-Dawley , Cromatografia Líquida , Flavonoides/farmacologia
20.
Front Pharmacol ; 13: 985159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120346

RESUMO

This study aimed 1) to investigate the influence of CYP2D6 variants on the catalyzing of fluvoxamine, and 2) to study the interaction between fluvoxamine and apatinib. An enzymatic reaction system was setup and the kinetic profile of CYP2D6 in metabolizing fluvoxamine was determined. In vivo, drug-drug interaction was investigated using Sprague-Dawley (SD) rats. Fluvoxamine was given gavage with or without apatinib. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine the concentrations of fluvoxamine and desmethyl-fluvoxamine. The results demonstrated that the relative clearance rates of CYP2D6.A5V, V104A, D337G, F164L, V342M, R440C and R497C increased significantly compared with CYP2D6.1, ranging from 153.626% ± 6.718% to 394.310% ± 33.268%. The activities of other variants reduced to different extent, or even lost function, but there was no statistical difference. The IC50 of apatinib against fluvoxamine disposition was determined, which is 0.190 µM in RLM and 6.419 µM in HLM, respectively. In vivo, apatinib can enhance the plasma exposure of fluvoxamine remarkably characterized by increased AUC, Tmax and Cmax. Meanwhile, the produce of desmethyl fluvoxamine was dramatically inhibited, both AUC and Cmax decreased significantly. Mechanistically, apatinib inhibit the generation of fluvoxamine metabolite with a mixed manner both in RLM and HLM. Furthermore, there were differences in the potency of apatinib in suppressing fluvoxamine metabolism among CYP2D6.1, 2 and 10. In conclusion, CYP2D6 gene polymorphisms and drug-drug interaction can remarkably affect the plasma exposure of fluvoxamine. The present study provides basis data for guiding individual application of fluvoxamine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA